Mobile App Fingerprinting through Automata Learning and Machine Learning

Fatemeh Marzani, Fatemeh Ghassemi, Zeynab Sabahi-Kaviani University of Tehran Thijs van Ede, Maarten van Steen University of Twente

Contact: f.marzani.ut@gmail.com

Problem Definition

• Most of apps communicate with the internet

Picture is taken from FlowPrint

Problem Definition

- Most of apps communicate with the internet
- How can we identify running apps from network traffic?

Picture is taken from FlowPrint

Problem Definition

- Most of apps communicate with the internet
- How can we identify running apps from network traffic?
- Sorry! It is not that easy!

Challenges

- Encrypted traffic
- Homogeneous traffic
- Dynamic traffic
- Evolving traffic
- Complexity of mathematical models
- Lack of sufficient and diverse data

Picture is taken from FlowPrint

Fingerprinting Usage

- Network management
- Security and intrusion detection
- Advertising and market research

Fingerprinting Methods

Method	Advantages	Disadvantages		
Port-based	Fast and simple	Infeasible for dynamic ports		
Payload-based	Accurate classification	Infeasible for encrypted payload		
Statistics-based	Fast	Ignore temporal relation among flows/packets High false positive rate		
Correlation-based	High accuracy	High computational overhead		
Behavior-based	Deal with encrypted traffic	Manual domain-specific		

Motivation

• Can we take advantage of combining methods to create faster and more accurate solution?

Automata Learning

Try to find one of the smallest automata with the set of given samples.

Automata Learning

Try to find one of the smallest automata with the set of given samples.

Active Learning

Automata Learning

Try to find one of the smallest automata with the set of given samples.

• Active Learning

• Passive Learning

K-TSS: K-Testable Language in the Strict Sense

- Learn a **regular language** from samples:
- Create k-test Vector of samples :
 - $Z = \langle \Sigma, I, F, T \rangle$ $\Sigma: \text{ Finite alphabet}$ I: Prefixes of length (k - 1) F: Suffixes of length (k - 1) T: Segments of length k
- Learn a regular language with k-test vector: $L(Z) = [(I\Sigma^* \cap \Sigma^* F) - \Sigma^* (\Sigma^k - T)\Sigma^*]$

If word = **abbac** and k-window size = 3, define k-test vector $\langle \Sigma, I, F, T \rangle$

• **alphabet** = $\Sigma = \{a, b, c\}$

If word = **abbac** and k-window size = 3, define k-test vector $\langle \Sigma, I, F, T \rangle$

- alphabet = $\Sigma = \{a, b, c\}$
- segments = $T = {abb}$

<mark>abb</mark>ac

If word = **abbac** and k-window size = 3, define k-test vector $\langle \Sigma, I, F, T \rangle$

- **alphabet** = $\Sigma = \{a, b, c\}$
- segments = $T = \{abb, bba\}$ abbac

If word = **abbac** and k-window size = 3, define k-test vector $\langle \Sigma, I, F, T \rangle$

- **alphabet** = $\Sigma = \{a, b, c\}$
- segments = T = {abb, bba, bac} abbac

If word = **abbac** and k-window size = 3, define k-test vector $\langle \Sigma, I, F, T \rangle$

- **alphabet** = $\Sigma = \{a, b, c\}$
- segments = $T = \{abb, bba, bac\}$
- prefixes = $I = {ab}$

If word = **abbac** and k-window size = 3, define k-test vector $\langle \Sigma, I, F, T \rangle$

- **alphabet** = $\Sigma = \{a, b, c\}$
- segments = $T = \{abb, bba, bac\}$
- prefixes = $I = {ab}$
- suffixes = $F = \{ac\}$

abb<mark>ac</mark>

ML-NetLang

ML-NetLang

Trace Generator

Converts the network traffic of each app into a list of words that are in the language of that app.

#	Time	Source	S-Port	Destination	D-Port	Protocol
1	20:25:56.71	10.11.2.4	49268	172.217.5.238	443	TCP
2	20:25:56.71	172.217.5.238	443	10.11.2.4	49268	TCP
3	20:25:57.03	10.11.2.4	49268	172.217.5.238	443	TCP
4	20:25:57.03	172.217.5.238	443	10.11.2.4	49268	TCP
5	20:26:07.81	10.11.2.4	31877	8.8.8.8	53	DNS
6	20:26:07.83	8.8.8.8	53	10.11.2.4	31877	DNS
7	20:26:07.87	10.11.2.4	8774	8.8.8	53	DNS
8	20:26:07.89	8.8.8.8	53	10.11.2.4	8774	DNS
9	20:26:08.45	10.11.2.4	15428	8.8.8.8	53	DNS
10	20:26:08.46	8.8.8.8	53	10.11.2.4	15428	DNS
11	20:26:08.52	10.11.2.4	30988	8.8.8	53	DNS
12	20:26:08.53	8.8.8.8	53	10.11.2.4	30988	DNS
13	20:26:08.56	10.11.2.4	55705	34.196.47.203	443	тср
14	20:26:08.56	34.196.47.203	443	10.11.2.4	55705	ТСР
		Destination Extraction	Trace Converter	→ S109 S6 S	S6 S6 S6 S	S166

Trace Generator

• Extract its network traffic flows.

#	Time	Source	S-Port	Destination	D-Port	Protocol
1	20:25:56.71	10.11.2.4	49268	172.217.5.238	443	TCP
2	20:25:56.71	172.217.5.238	443	10.11.2.4	49268	TCP
3	20:25:57.03	10.11.2.4	49268	172.217.5.238	443	TCP
4	20:25:57.03	172.217.5.238	443	10.11.2.4	49268	ТСР
5	20:26:07.81	10.11.2.4	31877	8.8.8.8	53	DNS
6	20:26:07.83	8.8.8.8	53	10.11.2.4	31877	DNS
7	20:26:07.87	10.11.2.4	8774	8.8.8	53	DNS
8	20:26:07.89	8.8.8.8	53	10.11.2.4	8774	DNS
9	20:26:08.45	10.11.2.4	15428	8.8.8.8	53	DNS
10	20:26:08.46	8.8.8.8	53	10.11.2.4	15428	DNS
11	20:26:08.52	10.11.2.4	30988	8.8.8.8	53	DNS
12	20:26:08.53	8.8.8.8	53	10.11.2.4	30988	DNS
13	20:26:08.56	10.11.2.4	55705	34.196.47.203	443	тср
14	20:26:08.56	34.196.47.203	443	10.11.2.4	55705	ТСР
		De stination Extraction	Trace Converter	→		

Trace Generator

- Extract its network traffic flows.
- Flows are categorized based on either **tuple of destinations (IP, Port) or TLS certificates** and given a symbol based on their category.
- S6 means, it's 6th unique destination address seen among all apps

#	Time	Source	S-Port	Destination	D-Port	Protocol
1	20:25:56.71	10.11.2.4	49268	172.217.5.238	443	тср
2	20:25:56.71	172.217.5.238	443	10.11.2.4	49268	TCP
3	20:25:57.03	10.11.2.4	49268	172.217.5.238	443	TCP
4	20:25:57.03	172.217.5.238	443	443 10.11.2.4		тср
5	20:26:07.81	10.11.2.4	31877	8.8.8.8	53	DNS
6	20:26:07.83	8.8.8.8	53	10.11.2.4	31877	DNS
7	20:26:07.87	10.11.2.4	8774	8.8.8	53	DNS
8	20:26:07.89	8.8.8.8	53	10.11.2.4	8774	DNS
9	20:26:08.45	10.11.2.4	15428	8.8.8.8	53	DNS
10	20:26:08.46	8.8.8.8	53	10.11.2.4	15428	DNS
11	20:26:08.52	10.11.2.4	30988	8.8.8	53	DNS
12	20:26:08.53	8.8.8.8	53	10.11.2.4	30988	DNS
13	20:26:08.56	10.11.2.4	55705	34.196.47.203	443	тср
14	20:26:08.56	34.196.47.203	443	10.11.2.4	55705	тср
		De stination Extraction	Trace Converter	► S109 S6	S6 S6 3	<mark>S6</mark> S166

ML-NetLang

Language Learner

The k-test vector $\langle \Sigma, I, F, T \rangle$ is derived by the language learner, taking the list of words as input app word = S109 S6 S6 S6 S6 S166 k-window size = 3

$$\Sigma = \{S109, S6, S166\} \\ I = \{S109 S6\} \\ F = \{S6 S166\} \\ T = \{S109 S6 S6, S6 S6 S6, S6 S6 S166\}$$

Language Learner

The union k-test vector of an app as its fingerprint:

 $UZ(App_{i}) = [\langle \bigcup_{k=1}^{m} \sum_{k}, \bigcup_{k=1}^{m} I_{k}, \bigcup_{k=1}^{m} F_{k}, \bigcup_{k=1}^{m} T_{k} \rangle]$

ML-NetLang

Classifier

Aim is to label given network traffic according to learned fingerprints.

FC: Feature Computation Function

 $FC(L(w), UZ(App_i)) = (\Delta T_i, \Delta T'_i, \Delta \Sigma_i, SIM\Sigma_i)$

Dataset

Dataset name	Encrypted	Homogeneous	Dynamic	Evolving
ReCon	\checkmark	\checkmark		\checkmark
Cross Platform	\checkmark	\checkmark	\checkmark	

ML-NetLang vs. NetLang

Dataset	M (Logis	L-NetLa stic Regr	ng ession)	NetLang (Distance Function)			
	Precision Recall F1 Sc		F1 Score	Precision	Recall	F1 Score	
Cross Platform (Android)	0.94	0.95	0.94	0.26	0.36	0.29	
Cross Platform(iOS)	0.96	0.97	0.96	0.20	0.27	0.22	
Cross Platform(Average)	0.95	0.96	0.95	0.23	0.32	0.26	
ReCon	0.97	0.97	0.96	0.29	0.28	0.26	
Training Time		<sec< th=""><th></th><th colspan="3"><1 hr</th></sec<>		<1 hr			
Test Time		<sec< th=""><th></th><th></th><th><milise< th=""><th>c</th></milise<></th></sec<>			<milise< th=""><th>c</th></milise<>	c	

ML-NetLang vs. FlowPrint and AppScanner

Dataset	ML-NetLang	g (Logistic	Regression)	FLOWPRIN	T (Jaccard	l Similarity)	AppScanner (Random Forest)		om Forest)
	Precision	Recall	F1 Score	Precision	Recall	F1 Score	Precision	Recall	F1 Score
Cross Platform(Android)	0.94	0.95	0.94	0.90	0.87	0.87	0.91	0.89	0.87
Cross Platform(iOS)	0.96	0.97	0.96	0.94	0.93	0.93	0.85	0.15	0.24
Cross Platform(Average)	0.95	0.96	0.95	0.92	0.89	0.89	0.88	0.50	0.58
ReCon	0.97	0.97	0.96	0.95	0.94	0.95	0.90	0.43	0.58

Conclusion

Combined automata learning and machine learning techniques: https://github.com/mlnetlang

- Advantages of using Automata Learning:
 - Automatically generating the alphabet of automata
 - Observe temporal relation among flows
- Advantages of using Machine Learning:
 - Upgrading the classification result by using ML algorithm
 - Fast classification

Thank You 🕲

- Questions?
- f.marzani.ut@gmail.com

Classifiers

Mobile App Fingerprinting through Automata Learning and Machine Learning

ML-NetLang Performance

• Stable performance if number of apps increase

Window Size (k) vs. Performance

Cross Platform (Android)

Window Size (k) vs. Performance

Cross Platform (iOS)

