UNIVERSITY OF TWENTE.

Detecting Anomalous Misconfigurations in AWS Identity and Access Management Policies

Thijs van Ede, Niek Khasuntsev, Bas Steen & Andrea Continella

Contact: t.s.vanede@utwente.nl

Capital One Attacker Exploited Misconfigured AWS Databases

After bragging in underground forums, the woman who stole 100 million credit applications from Capital One has been found guilty.

Capital One Attacker Exploited

After bragging in Capital One has

Three million senior citizens' info exposed by SeniorAdvisor

A security breach at SeniorAdvisor, a review website, compromised over three million elderly adults' personal information in August. <u>WizCase researchers</u> observed that a misconfigured Amazon S3 bucket exposed details including individuals' names, numbers, and email addresses. The information pertained to

Capital One Attacker Exploited

After bragging in Capital One has

Three million senior citizens' info exposed by SeniorAdvisor

A security breach at SeniorAdvisor, a review website, compromised over three

Amazon Web Services Misconfiguration Exposes Half a Million Cosmetics Customers <u>se researchers</u> 🗷

ails including nation pertained to

Capital One Atta Miscon

After bragging i Capital One has In May 2022, a security firm discovered an unprotected AWS S3 bucket containing 6.5 terabytes of "Electronic Flight Bag" information, including navigation information, proprietary software, and personal information pertaining to Pegasus Airlines crew members. Once notified of the exposed information, Pegasus Airlines promptly secured the unprotected S3 bucket.

A security breach at semonaurison, a review website, compromised over three

Amazon Web Services Misconfiguration Exposes Half a Million Cosmetics Customers se researchers

ails including nation pertained to

Capital One Atta Miscon

After bragging i Capital One has In May 2022, a security firm discovered an unprotected AWS S3 bucket containing 6.5 terabytes of "Electronic Flight Bag" information, including navigation information, proprietary software, and personal information pertaining to Pegasus Airlines crew members. Once notified of the exposed information, Pegasus Airlines promptly secured the unprotected S3 bucket.

A security breach at semionauvisor, a review website, compromised over timee

July 2021: PeopleGIS Exposes Sensitive Data for Over 80 Municipalities

In July 2021, a group of ethical hackers at WizCase discovered a vulnerability affecting at least 80 municipalities in the United States. This breach resulted from misconfigured Amazon S3 buckets related to MapsOnline, a service run by the software company PeopleGIS. It's unclear whether the misconfiguration was made by PeopleGIS or by the municipalities in question.

misconfiguration was made by PeopleGIS or by the municipalities in question.

UNIVERSITY OF TWENTE

UNIVERSITY OF TWENTE

UNIVERSITY OF TWENTE

UNIVERSITY OF TWENTE

UNIVERSITY OF TWENTE

UNIVERSITY OF TWENTE

Cloud Custodian

- Cloud Custodian
 - \circ Rule-based

- Cloud Custodian
 - Rule-based
 - Requires manual tweaking of rules

- Cloud Custodian
 - Rule-based
 - Requires manual tweaking of rules
- P-Diff

- Cloud Custodian
 - Rule-based
 - Requires manual tweaking of rules
- P-Diff
 - Learns control policies from access logs

- Cloud Custodian
 - Rule-based
 - Requires manual tweaking of rules
- P-Diff
 - Learns control policies from access logs
 - Reactive approach

Idea

• Most policies are properly configured

Idea

- Most policies are properly configured
- Use **anomaly detection** to learn properly configured policies

Idea

- Most policies are properly configured
- Use **anomaly detection** to learn properly configured policies
- Any found **anomalies** will likely be **misconfigurations**

Challenges

• Policies are **specific** to the **context** of the organization

UNIVERSITY OF TWENTE

Challenges

- Policies are **specific** to the **context** of the organization
- Checks must be **proactive** to ensure policies are not abused

UNIVERSITY OF TWENTE

Challenges

- Policies are **specific** to the **context** of the organization
- Checks must be **proactive** to ensure policies are not abused
- Checks must be **low maintenance** to ensure adoption

• Model policies as a graph

UNIVERSITY OF TWENTE

• Model policies as a graph

UNIVERSITY OF TWENTE

• Model policies as a graph

UNIVERSITY OF TWENTE

- Model policies as a graph
 - A policy can have multiple statements

UNIVERSITY OF TWENTE

- Model policies as a graph
 - A policy can have multiple statements

UNIVERSITY OF TWENTE

- Model policies as a graph
 - A policy can have multiple statements

- Model policies as a graph
 - A policy can have multiple statements

UNIVERSITY OF TWENTE

UNIVERSITY OF TWENTE

Approach

- Model policies as a graph
 - A policy can have multiple statements
- Policies are specific to the context of the organization

UNIVERSITY OF TWENTE

Approach

- Model policies as a graph
 - A policy can have multiple statements
- Policies are specific to the context of the organization
- Model the context of policies using Node2vec

UNIVERSITY OF TWENTE

• Select a starting **policy node**

UNIVERSITY OF TWENTE

- Select a starting **policy node**
- Perform random walks

UNIVERSITY OF TWENTE

- Select a starting policy node
- Perform random walks
 - Collect information about visited nodes and edges

UNIVERSITY OF TWENTE

- Select a starting **policy node**
- Perform random walks
 - Collect information about visited nodes and edges

UNIVERSITY OF TWENTE

- Select a starting **policy node**
- Perform random walks
 - Collect information about visited nodes and edges
- Store information in a fixed length vector

UNIVERSITY OF TWENTE

UNIVERSITY OF TWENTE

Approach - Anomaly detection

• Each policy node is represented by a vector

Approach - Anomaly detection

- Each policy node is represented by a vector
- We can train an anomaly detection model to find anomalous policies

Approach - Anomaly detection

- Each policy node is represented by a vector
- We can train an anomaly detection model to find anomalous policies
 - One-Class SVM
 - Local Outlier Factor
 - Isolation Forest
 - Robust Covariance

How does this work in practice?

• Security operators manually verify a set of policies

How does this work in practice?

- Security operators manually verify a set of policies
- We run our approach and train the anomaly detector

How does this work in practice?

- Security operators manually verify a set of policies
- We run our approach and train the anomaly detector
- When new policies are added, we run our pipeline to check if we find an anomaly

• Evaluated on 3 real-world datasets

		Number of				
Dataset	employees	policies	users	groups	roles	collections
1	12,000	842	0	0	55	8
2	130	812	0	0	34	2
3	4	826	2	1	10	12

- Evaluated on 3 real-world datasets
 - Dataset 1 & 2 are SSO users

		Number of				
Dataset	employees	policies	users	groups	roles	collections
1	12,000	842	0	0	55	8
2	130	812	0	0	34	2
3	4	826	2	1	10	12

- Evaluated on 3 real-world datasets
 - Dataset 1 & 2 are SSO users
 - Data was periodically collected using our tool

		Total number of									
Dataset	employees	policies	users	groups	roles	collections					
1	12,000	842	0	0	55	8					
2	130	812	0	0	34	2					
3	4	826	2	1	10	12					

- Evaluated on 3 real-world datasets
- Compared with rule-based Cloud Custodian

		Number of				
Dataset	employees	policies	users	groups	roles	collections
1	12,000	842	0	0	55	8
2	130	812	0	0	34	2
3	4	826	2	1	10	12

- Evaluated on 3 real-world datasets
- Compared with rule-based Cloud Custodian
- Increased detection of misconfigurations

		0	our appro	ach	Clo	oud Cust	odian	Cloud Custodian			
		Ū	ur uppre	,uen		All rule	s	Selected rules			
	DS	DS Prec. Recall F1-score			Prec.	Recall	F1-score	Prec.	Recall	F1-score	
Misconf.	1	66.67%	66.67%	66.67%	7.89%	10.34%	4.48%	100.00%	10.34%	9.37%	
	2	70.00%	63.34%	66.67%	13.73%	17.07%	7.61%	100.00%	17.07%	14.58%	
	3	75.00%	50.00%	60.00%	15.38%	11.32%	6.52%	100.00%	11.32%	10.17%	
IIt	1	91.58%	91.58%	91.58%	97.93%	97.60%	97.76%	98.99%	98.98%	98.57%	
Overall	2	92.03%	92.31%	92.15%	97.40%	97.09%	97.24%	98.75%	98.73%	98.28%	
0	3	94.97%	95.45%	95.03%	98.93%	97.88%	96.87%	98.12%	98.08%	97.33%	

- Evaluated on 3 real-world datasets
- Compared with rule-based Cloud Custodian
- Increased detection of **misconfigurations** but more **FPs**

	i.	0	our appro	ach	Clo	oud Cust		Cloud Custodian			
					í.	All rule	s	Se	elected ru	iles	
	DS	Prec.	Recall	F1-score	Prec.	Recall	F1-score	Prec.	Recall	F1-score	
Misconf.	1	66.67%	66.67%	66.67%	7.89%	10.34%	4.48%	100.00%	10.34%	9.37%	
	2	70.00%	63.34%	66.67%	13.73%	17.07%	7.61%	100.00%	17.07%	14.58%	
Μ	3	75.00%	50.00%	60.00%	15.38%	11.32%	6.52%	100.00%	11.32%	10.17%	
IIt	1	91.58%	91.58%	91.58%	97.93%	97.60%	97.76%	98.99%	98.98%	98.57%	
Overall	2	92.03%	92.31%	92.15%	97.40%	97.09%	97.24%	98.75%	98.73%	98.28%	
0	3	94.97%	95.45%	95.03%	98.93%	97.88%	96.87%	98.12%	98.08%	97.33%	

Ev	aluat	ion	- Ar	Precision and figurations?							s?	
•	Evalua	on 3		recall	can be							
•	Compa	arec	l with	tuned in anomaly an								
Increased detector detector s but more FPs											S	
	39 .	2	0	ur	ach	Clo	oud Custo		Cloud Custodian			
				\vee	All rules				Selected rules			
		DS	Prec.	Recall	F1-score	Prec.	Recall	F1-score	Prec.	Recall	F1-score	
	nf.	1	66.67%	66.67%	66.67%	7.89%	10.34%	4.48%	100.00%	10.34%	9.37%	
	Misconf.	2	70.00%	63.34%	66.67%	13.73%	17.07%	7.61%	100.00%	17.07%	14.58%	
	Mi	3	75.00%	50.00%	60.00%	15.38%	11.32%	6.52%	100.00%	11.32%	10.17%	
	IIt	1	91.58%	91.58%	91.58%	97.93%	97.60%	97.76%	98.99%	98.98%	98.57%	
	Overall	2	92.03%	92.31%	92.15%	97.40%	97.09%	97.24%	98.75%	98.73%	98.28%	
	0	3	94.97%	95.45%	95.03%	98.93%	97.88%	96.87%	98.12%	98.08%	97.33%	

UNIVERSITY OF TWENTE

Conclusion

Using anomaly detection in IAM policies:

- Increases the number of detected misconfigurations
- **Incorrectly** flags **slightly more** policies than rule-based solutions
- Requires **fewer** manual steps than rule-based solutions

https://github.com/utwente-scs/misdet-code

Questions?

Using anomaly detection in IAM policies:

- Increases the number of detected misconfigurations
- Incorrectly flags slightly more policies than rule-based solutions
- Requires fewer manual steps than rule-based solutions

https://github.com/utwente-scs/misdet-code

Thijs van Ede

🔀 <u>t.s.vanede@utwente.nl</u>

